Advanced Instrumentation for Polar Research

S. Gogineni, C. Allen, C. Leuschen and R. Hale

NATIONAL SCIENCE FOUNDATION :: KANSAS TECHNOLOGY ENTERPRISE CORPORATION :: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

The University of Kansas | The Ohio State University | Pennsylvania State University The University of Maine | Elizabeth City State University | Haskell Indian Nations University

Centre for Polar Observation and Modelling | University of Copenhagen Technical University of Denmark | Antarctic Climate & Ecosystems CRC

Outline

- Introduction and Background
- Systems and sample field and laboratory results
 - Radar Sounder/Imager
 - Ultra wideband Radar
 - 2.5 -7 GHz
 - Ku-band radar altimeter

Sensor	Freq/BW	Purpose
Radar Sounder/Imager	195 /30 MHz	Ice thickness Bed topography Basal conditions Internal Layers
Microwave Ultra- wideband Radar	2.5-7 GHz	Snow thickness over sea ice and internal layers in firn
Radar Altimeter (RA)	15/4 GHz	Ice-surface elevation Accumulation rate Snow thickness

Introduction—Ice Thickness

- Radar Sounding of glaciers is well established.
- Major challenges are
 - sounding of fast-flowing glaciers and ice-sheet margins
 - High-altitude measurements
- Ice thickness is a key to developing models to predict future sea level rise
- Synthetic Aperture Radar (SAR) and Array processing to reduce clutter
 - Sound ice
- Image ice-bed interface

Introduction — Ice Thickness

- SAR imaging of ice-bed
- Sounding of fast-flowing glaciers
 - · A major challenge in radio glaciology
- Extremely low-range sidelobes

Clutter Problem & SOLUTION

Jakobshavn Isbrae Along-Channel Velocity (2005) and Bed & Surface Elevation (2006)

SURFACE ELEVATION (NASA ATM, W. Krabill, and B. Csatho)
BED TOPOGRAPHY
SURFACE VELOCITY (provided by Ken Jezek and Ian Joughin)

CReSIS

Large Errors in Flux Estimation km³/yr

Year	South	North	Tota1
1985	25.3 ± 3.5	2.7 ± 0.5	28.0 ± 4.0
1995	25.3 ± 3.1	2.6 ± 0.5	27.9 ± 3.6
2000	32.7 ± 4.1	4.6 ± 0.9	37.3 ±5.0
2005	34.2 ± 4.7	6.2 ± 1.4	40.4 ± 6.0

Accurate ice thickness and bed topography information are required

Dense grid over three key glaciers

March-April 09

Introduction— Need for Improved Radar

 $G \propto N^2$

 G_TG_R ~20 dB

Results from GAMBIT project

Multichannel Coherent Radar Sounder/Imager (MCoRDS/I)

- Low- and high-altitude operation
- 8-Channel complex waveform generator
 - Transmit antenna pattern with 30-35 db sidelobes
- 8-Channel receiver and digitizer
 - Receive antenna pattern with 30-35 dB sidelobes
 - Nadir beam to sound ice
 - Off-nadir beams to image ice-bed interface
- 30-50 dB higher sensitivity
- Range sidelobes 70 dB or lower
- Antenna sidelobes ~ 70 dB or lower for two way

System Parameters

Parameter	Value	Units
Center frequency / bandwidth	195 / 30	MHz
Peak transmit power	800	W
Transmit pulse duration	2-30	μs
Pulse repetition frequency	7.5/10	kHz
Number of antennas in array	5	
Range of operating altitudes	0.5 to 10	km
Nominal ground speed	250	m/s
Maximum ice thickness	5	km
Vertical resolution (in ice)	2.8	m
Number of receive channels	5	
Recording data rate	220	MB/s
On-board data storage capacity	5	ТВ

Radar Sounder/Imager

- SAR imaging of ice-bed
- Sounding of fast-flowing glaciers
 - · A major challenge in radio glaciology
- Extremely low-range sidelobes

Clutter Problem & SOLUTION

Jakobshavn Isbrae Along-Channel Velocity (2005) and Bed & Surface Elevation (2006)

SURFACE ELEVATION (NASA ATM, W. Krabill, and B. Csatho)
BED TOPOGRAPHY
SURFACE VELOCITY (provided by Ken Jezek and Ian Joughin)

CReSIS

High Altitude

Results from high altitude

SAR Imaging of Ice Bed

Low-Range Sidelobes

ompressed ocean-surface return

Depth sounder fairing development

Depth sounder antenna & fairing development

Simulated along- and cross-track antenna pattern with Blackmann weights.

Simulated antenna pattern with Blackmann weights projected onto the ground at 195 MHz for aircraft altitude of 500 m AGI.

RFI

With laser on

Laser off

RFI problem and solution

Narrow Bandwidth—to reduce RFI

Ku-band Radar Altimeter

To measure icesurface elevation

System	Ku-band Altimeter	
Architecture	FM-CW	
Frequency range	13-17 GHz	
Output power	200 mW	
Pulse duration	240 μs	
Pulse repetition frequency	2.5 kHz	
Antenna	2x Patch array	
Max operational altitude	< 2 km	
Nominal ground speed	250 m/s	
Vertical resolution	~ 10 cm	
Footprint (varies with altitude)	~ 5 m (along-track)	
	~ 30 m (cross-track)	
Recording data rate	20 MB/s	
On-board storage capacity	1 TB	

Snow Radar

Ultra wideband radar

Parameter	Value	Units	
r ar ameter	varue	Units	
Architecture	FM-CW		
Frequency range	2.5 - 7	GHz	
Peak transmit power	< 1	W	
Transmit pulse duration	270	μs	
Pulse repetition frequency	2.5	kHz	
Number of antennas in array	2 (Horn)		
Man an anti-nat attitude	< 600 m (snow thickness)		
Max operational altitude	< 2 km (altimetry)		
Nominal ground speed	250	m/s	
Maximum ice thickness	5	km	
Vertical resolution (in ice)	~ 10	cm	
Footprint (varies w/ altitude)	~ 10	m (along-track)	
Recording data rate	20	MB/s	
On-board data storage capacity	1	TB	

Snow Radar Data Over Firn

CReSIS

Data Processing

- On-site processing
 - 24-48 hours
- SAR and Array processing
 - 3 months after equipment returns to Lawrence
- RFI reduction algorithms and SAR images
 - 6-18 months

Summary

"I invented nothing new. I simply assembled into a car the discoveries of other men behind whom were centuries of work. . . Had I worked fifty or ten or even five years before, I would have failed. So it is with every new thing. Progress happens when all the factors that make for it are ready, and then it is inevitable. To teach that a comparatively few men are responsible for the greatest forward steps of mankind is the worst sort of nonsense. "Henry Ford

Importance of ice sheets and sea level rise Technological advances

- > Integration of analog and digital circuits on chips
- > CAD tools to design and optimize
- > Signal processing techniques

Ability to handle large data sets

-15

